
Legal Information
Internet Information Server
This document is an early release of the final documentation. It is meant to specify and accompany
software that is still in development. Some of the information in this documentation may be inaccurate
or may not be an accurate representation of the functionality of the final specification or software.
Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from
these inaccuracies.

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the
express written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

©1996 Microsoft Corporation. All rights reserved.

Microsoft, MS, Win32, Win32s, Windows, and Windows NT are registered trademarks and ActiveX is a
trademark of Microsoft Corporation in the United States and/or other countries.

All other product and company names mentioned herein are the trademarks of their respective owners.

Overview
The Microsoft Internet Application Programming Interface (ISAPI) is a high-performance alternative to
Common Gateway Interface (CGI) executable files. See Advantages of DLLs Over Executable Files.

This document describes the basics for:

Writing an Internet Server Application

With this, you can create fast, run-time DLLS. These low-overhead applications consistently out-perform
executables, both in speed and under load.

Writing an ISAPI Filter

These custom filter DLLs can be used to handle authentication, encryption, and many other applications
flowing between the network connection and the HTTP Server.

This document also contains a section that describes the design of the Internet Service Manager (ISM)
Application and the Internet Service Manager API set (ISMAPI). The Internet Service Manager is used to
manage a set of configuration DLLs and perform configuration tasks. These DLLs are used to administer
the Internet Server services.

Writing an Internet Server Application
The first section of this documentation describes how to write an Internet Server application and begins
with an introduction to Common Gateway Interfaces. Application developers should also review the
additional instructions contained in Important Notes.

This section deals specifically with writing Internet Server applications for the Microsoft® Windows
NT® operating system. However, it can also be used to build a sharable image for any operating
system, provided the operating system supports loadable, shared images. Process Software has built
an OpenVMS-loadable image based on this documentation for a Web server running on OpenVMS.

Introduction to CGI
Common Gateway Interface (CGI) is an interface for running external programs or gateways under an
information server. Currently, the only supported information servers are HTTP servers. What is referred
to as gateways are actually programs that handle information requests and return the appropriate
document or generate a document on the fly.

In using CGI, your server can access information in a form not readable by the client (such as an SQL
database) and then act as a gateway between the two to produce information that the client can use.

With the ever-expanding services available through the Web, more and more CGI applications will be
developed. This requires a closer examination of the existing server-executed CGI applications with a
view to improving performance.

A server responds to a CGI execution request from a client browser by creating a new process and then
passing the data received from the browser through the environment variables and stdin. Results
gathered by the CGI application are expected on the stdout of the newly created process. The server
creates as many processes as the number of requests received.

For more information on the Common Gateway Interface, refer to http://hoohoo.ncsa.uiuc.edu/cgi/.

Drawbacks with Current HTTP Servers
Existing HTTP servers create a separate process for each request received. The more concurrent
requests there are, the more concurrent processes created by the server. However, creating a process for
every request is time-consuming and requires large amounts of server RAM. In addition, this can restrict
the resources available for sharing from the server application itself, slowing down performance, and
increasing wait times on the Web.

One way to avoid this is to convert the current CGI executable file into a DLL. The server loads the DLL
the first time a request is received and the DLL then stays in memory, ready to service other requests until
the server decides it is no longer needed.

Advantages of DLLs Over Executable Files
In the Microsoft® Windows® operating system, dynamic linking provides a way for a process to call a
function that is not part of its executable code. The executable code for the function is located in a
dynamic-link library (DLL), which contains one or more functions that are compiled, linked, and stored
separately from the processes which use them. For example, the Microsoft® Win32® Application
Programming Interface (API) is implemented as a set of dynamic-link libraries, so any process using the
Win32 API uses dynamic linking.

There are two methods for calling a function in a DLL:

· Load-time dynamic linking: This occurs when an application's code makes an explicit call to a DLL
function. This type of linking requires that the executable module of the application be built by linking
with the DLL's import library, which supplies the information needed to locate the DLL function when
the application starts.

· Run-time dynamic linking: This occurs when a program uses the LoadLibrary and GetProcAddress
functions to retrieve the starting address of a DLL function. This type of linking eliminates the need to
link with an import library.

This section focuses on the latter category of DLLs. These DLLs, also called ISAPI applications, are
loaded at run time by the HTTP server and are called at the common entry points of
GetExtensionVersion and HttpExtensionProc. For more information on this, see DLL Entry Points.

Unlike .EXE type, script-executable files, the ISAPI application DLLs are loaded in the same address
space as the HTTP server. This means all the resources made available by the HTTP server process are
also available to the ISAPI application DLLs. There is minimal overhead associated with executing these
applications because there is no additional overhead for each request. Preliminary benchmark programs
show that loading ISAPI application DLLs in process can perform considerably faster than loading them
into a new process. In addition, in-process applications scale much better under heavy load.

Since an HTTP server knows the ISAPI application DLLs that are already in memory, it is possible for the
server to unload the ISAPI application DLLs that have not been accessed in a configurable amount of
time. By preloading an ISAPI application DLL, the server can speed up even the first request for that
ISAPI application. In addition, unloading ISAPI application DLLs that have not been used for some time
will free up system resources.

ISAPI Applications Architecture and CGI Architecture
Multiple ISAPI application DLLs can reside in the same process as the HTTP server, while the
conventional CGI applications run in different processes.

Interaction between an HTTP server and an ISAPI application DLL is accomplished through extension
control blocks (ECBs). These control blocks are explained in Interaction Between the HTTP Server and
the ISAPI Applications. In the case of conventional CGI executable files, the server creates a separate
process for each request and communicates with the created process through environment variables and
stdin/stdout.

The following illustration explains how an ISAPI application DLL interacts with an HTTP server and shows
the interaction of script-executable files with an HTTP server.

{ewc msdncd, EWGraphic, bsd23508 0 /a "SDK.WMF"}

The ISAPI application DLLs must be multithread-safe since multiple requests will be received
simultaneously. For information on how to write multithread-safe DLLs, refer to the related articles on the
Microsoft Development Library CD-ROM, or any of the books on Win32 programming. Similarly, for
information on thread-safe DLLs and the scope of usage of C run-time routines in a DLL, see the articles
on sharing data in a DLL on the Microsoft Development Library CD-ROM.

Converting Existing CGI Scripts to ISAPI Application
DLLs
This section explains the basic requirements for converting an existing CGI script-executable file to an
ISAPI application DLL. As with other DLLs, Web server applications should be thread-safe. More than one
client will be executing the same function at the same time, so the code should follow safety procedures
in modifying a global or static variable.

By using appropriate synchronization techniques, such as critical sections and semaphores, this issue
can be handled properly. For additional information on writing thread-safe DLLs, see the documentation in
the Win32 SDK and in the Microsoft Development Library.

The primary differences between an ISAPI application DLL and a CGI executable file include the
following:

· An ISAPI application receives most of its data through the lpbData member of the ECB as opposed to
reading it from stdin. For any additional data, the extension uses the ReadClient callback function.

· The common CGI variables are provided in the ECB. For other variables, call GetServerVariable. In
a CGI executable file, these are retrieved from the environment table using getenv.

· When sending data back to the client, use the WriteClient callback function instead of writing to
stdout.

· When specifying a completion status, instead of sending a "Status: NNN xxxxx..." to stdout, send
either the header directly using the WriteClient callback function, or use the
HSE_REQ_SEND_RESPONSE_HEADER, ServerSupportFunction.

· When specifying a redirect with the "Location:" or "URI:" header, instead of writing the header to
stdout, use the HSE_REQ_SEND_URL if the URL is local. However, if the URL is remote or unknown,
use the HSE_REQ_SEND_URL_REDIRECT_RESP, ServerSupportFunction callback function.

Interaction Between the HTTP Server and the ISAPI
Applications
The HTTP server communicates with the ISAPI applications through a data structure called the
EXTENSION_CONTROL_BLOCK (ECB). A client uses an ISAPI application just like its CGI counterpart
except, instead of referencing "http://scripts/foo.exe?Param1+Param2" in the CGI, the following form
would be used:

"http://scripts/foo.dll?Param1+Param2"

In addition to identifying the files with extensions .EXE and .BAT as CGI executable files, the server will
identify a file with a .DLL extension as a script to execute and, in the currrent version, will recognize
an .ISA in place of a .DLL. When the server loads the .DLL, it calls the .DLL at the entry point of
GetExtensionVersion to retrieve the version number of the document on which the extension is based,
and a short readable description for server administrators. For every client request, the
HttpExtensionProc entry point is called.

The extension receives commonly needed information such as the query string, path information, method
name, and the translated path. (Retrieving data sent by the client browser is explained in detail later in
this section.)    The server communicates with the extension DLL through the
EXTENSION_CONTROL_BLOCK data structure.

typedef struct _EXTENSION_CONTROL_BLOCK {
 DWORD cbSize; // Size of this structure.
 DWORD dwVersion; // Version information of
 // this spec.
 HCONN ConnID; // Context number not to
 // be modified!
 DWORD dwHttpStatusCode; // HTTP Status code
 CHAR lpszLogData[HSE_LOG_BUFFER_LEN];// null-terminated log
 // information
 // specific to this
 // Extension DLL.
 LPSTR lpszMethod; // REQUEST_METHOD
 LPSTR lpszQueryString; // QUERY_STRING
 LPSTR lpszPathInfo; // PATH_INFO
 LPSTR lpszPathTranslated; // PATH_TRANSLATED
 DWORD cbTotalBytes; // Total bytes indicated from
 // client
 DWORD cbAvailable; // Available number of bytes
 LPBYTE lpbData; // Pointer to cbAvailable
 // bytes
 LPSTR lpszContentType; // Content type of client data
 BOOL (WINAPI * GetServerVariable) (HCONN hConn,
 LPSTR lpszVariableName,
 LPVOID lpvBuffer,
 LPDWORD lpdwSizeofBuffer);
 BOOL (WINAPI * WriteClient) (HCONN ConnID,
 LPVOID Buffer,
 LPDWORD lpdwBytes,
 DWORD dwReserved);
 BOOL (WINAPI * ReadClient) (HCONN ConnID,
 LPVOID lpvBuffer,
 LPDWORD lpdwSize);
 BOOL (WINAPI * ServerSupportFunction)(HCONN hConn,

 DWORD dwHSERRequest,
 LPVOID lpvBuffer,
 LPDWORD lpdwSize,
 LPDWORD lpdwDataType);
}

This control block contains the following fields:

Field Remarks
cbSize (IN) The size of this structure.
dwVersion (IN) The version information of

this document. The
HIWORD has the major
version number and the
LOWORD has the minor
version number.

connID (IN) A unique number assigned
by the HTTP server and
which should not be
modified.

dwHttpStatusCode
(OUT)

The status of the current
transaction when the
request is completed.

lpszLogData
(OUT)

Buffer of size
HSE_LOG_BUFFER_LEN.
Contains a null-terminated
log information string,
specific to the ISAPI
applications, of the current
transaction. This log
information will be entered in
the HTTP server log.
Maintaining a single log file
with both HTTP server and
ISAPI application
transactions is very useful
for administration purposes.

lpszMethod (IN) The method with which the
request was made. This is
equivalent to the CGI
variable
REQUEST_METHOD.

lpszQueryString
(IN)

A null-terminated string
containing the query
information. This is
equivalent to the CGI
variable QUERY_STRING.

lpszPathInfo (IN) A null-terminated string
containing extra path
information given by the
client. This is equivalent to
the CGI variable
PATH_INFO.

lpszPathTranslated A null-terminated string

(IN) containing the translated
path. This is equivalent to
the CGI variable
PATH_TRANSLATED.

cbTotalBytes (IN) The total number of bytes to
be received from the client.
This is equivalent to the CGI
variable
CONTENT_LENGTH. If this
value is 0xffffffff, then there
are 4 gigabytes or more of
available data. In this case,
ReadClient should be called
until no more data is
returned.

cbAvailable (IN) The available number of
bytes (out of a total of
cbTotalBytes) in the buffer
pointed to by lpbData. If
cbTotalBytes is the same as
cbAvailable, the lpbData
variable will point to a buffer
that contains all the data as
sent by the client.
Otherwise, cbTotalBytes will
contain the total number of
bytes of data received. The
ISAPI applications will then
need to use the callback
function ReadClient to read
the rest of the data
(beginning from an offset of
cbAvailable).

lpbData (IN) This points to a buffer of size
cbAvailable that has the
data sent by the client. You
will get the first 48k of data.

lpszContentType
(IN)

A null-terminated string
containing the content type
of the data sent by the client.
This is equivalent to the CGI
variable CONTENT_TYPE.

Entry Points for Internet Web Server Applications
All DLLs written as Internet Web Server applications are required to export two entry points:
GetExtensionVersion and HttpExtensionProc (TerminateExtension is optional).

When the HTTP server loads an ISAPI application for the first time after loading the DLL, it calls the
GetExtensionVersion function. If this function does not exist, the call to load the ISAPI application will
fail. The recommended implementation of this function is:

BOOL WINAPI GetExtensionVersion(HSE_VERSION_INFO *pVer)
{

 pVer->dwExtensionVersion = MAKELONG(HSE_VERSION_MINOR,
 HSE_VERSION_MAJOR);
 lstrcpyn(pVer->lpszExtensionDesc,
 "This is a sample Web Server Application",
 HSE_MAX_EXT_DLL_NAME_LEN);
 return TRUE;
}

The second required entry point is:

DWORD HttpExtensionProc(LPEXTENSION_CONTROL_BLOCK *lpEcb);

This entry point is similar to the main function and uses the callback functions to read client data and
decide on the action to be taken. Before returning to the server, a properly formatted response must be
sent to the client either through WriteClient or ServerSupportFunction.

Return Values
These are the possible return values.

Value Meaning
HSE_STATUS_SUC
CESS

The ISAPI application has
finished processing. The
server can disconnect and
free up allocated resources.

HSE_STATUS_SUC
CESS_AND_KEEP_
CONN

The ISAPI application has
finished processing and the
server should wait for the
next HTTP request if the
client supports persistent
connections. The application
should return this only if it
was able to send the correct
content length header to the
client. The server is not
required to keep the session
open. The application should
return this value only if it has
sent a connection: a keep-
alive header to the client.

HSE_STATUS_PEN
DING

The ISAPI application has
queued the request for
processing and will notify the
server when it has finished.
See
HSE_REQ_DONE_WITH_SE
SSION under the
ServerSupportFunction
function.

HSE_STATUS_ERR
OR

The ISAPI application has
encountered an error while
processing the request. The
server can disconnect and
free up allocated resources.

ISAPI applications can expose an optional export which is similar to GetExtensionVersion and is called

TerminateExtension. This function is new and is called just before the server unloads the application. It
provides a safe way to clean up threads and complete other shutdown type activities. The prototype is:

BOOL WINAPI TerminateExtension(DWORD dwFlags);

Where dwFlags is a bitfield consisting of the following values:

Bit Flags for TerminateExtension

Value Meaning
HSE_TERM_ADVI
SORY_UNLOAD

The server wants to unload the
extension. The extension can
return TRUE if OK, or FALSE if
the server should not unload
the extension.

HSE_TERM_MUS
T_UNLOAD

The server is indicating the
extension is about to be
unloaded, the extension cannot
refuse.

//

#define HSE_TERM_ADVISORY_UNLOAD 0x00000001
#define HSE_TERM_MUST_UNLOAD 0x00000002

Important Notes
The application is called at HttpExtensionProc and receives a pointer to the extension control block
(ECB) structure. The application then determines what needs to be done by reading the client input
(calling the functions GetServerVariable and, if necessary, ReadClient). This is similar to setting up
environment variables and reading stdin.

The ISAPI application DLL is loaded in the same process as the HTTP server. Consequently, an access
violation by ISAPI applications can crash some HTTP servers. Therefore, you should thoroughly test the
ISAPI applications to ensure integrity. This is important since malfunctioning ISAPI applications can
corrupt the server's memory space, or cause memory or resource leaks, if the application fails to clean up
after itself.

To alleviate this problem, many HTTP servers wrap the entry points for the ISAPI applications in a
__try/__except clause so access violations or other exceptions will not directly affect the server. For more
information on the __try/__except clause, refer to the Win32 API documentation.

The main entry point in the ISAPI applications, HttpExtensionProc, takes only one input parameter: a
pointer to the structure type EXTENSION_CONTROL_BLOCK. Application developers are not expected
to change the following fields in the ECB structure: cbSize, dwVersion, and connID.

However, developers are encouraged to initialize their DLL automatically by defining an entry-point
function for the DLL (for example, DllMain). The operating system calls this entry point function by
default, the first time a LoadLibrary call or the last time a FreeLibrary call is made for that DLL, or when
a new thread is created or destroyed in the process.

Developers are also encouraged to maintain statistical information, or any information pertaining to the
DLL, within the DLL itself. By creating appropriate forms, you can measure the usage/performance of a
DLL remotely. Also, this information can be reviewed through the performance functions for integration
with PerfMon. The lpszLogData field of the ECB can also be used to log data to the server log.

Writing an ISAPI Filter
This section of the documentation describes how to write an Internet Server API (ISAPI) filter for the
Microsoft® Internet Server.

ISAPI Filter Overview
An Internet Server API (ISAPI) filter is a replaceable, dynamic-link library (DLL) which the server calls
whenever there is an HTTP (Hypertext Transfer Protocol) request. When the filter is first loaded, it
communicates to the server what sort of notifications will be accepted. After that, whenever a selected
event occurs, the filter is called upon to process the event.

ISAPI filters are very powerful and can be used to facilitate a number of different applications, including
the following:

· Custom authentication schemes
· Compression
· Encryption
· Logging
· Traffic analysis or other request analyses (for example, looking for requests to "..\..\etc\password")

Multiple filters can be installed. The notification order is based on the priority specified by the filter and,
after that, the load order in the registry to resolve any ties.

Note    Once a filter has signaled interest in a request, it will receive that data regardless of whether the
request is for a file, a CGI (Common Gateway Interface) application, or an ISAPI application. ISAPI filters
can be used to enhance the Microsoft Internet Server with custom features such as enhanced logging of
HTTP requests, custom encryption, compression schemes, or new authentication methods. The filter
applications sit between the network connection to the clients and the HTTP server.

Depending on the options chosen, the filter application can act on several server operations. This
includes reading raw data from the client, processing headers, enabling communications over a secure
port (for example, PCT¾Private Communication Technology, and SSL¾Secure Sockets Layer), as well as
other stages in the processing of the HTTP request.

The setup program that installs the ISAPI filter should add it to the registry under
"HKEY_LOCAL_MACHINE\ System\ CurrentControlSet\ Services\ W3Svc\ Parameters\ Filter DLLs." This
is a comma-separated list and the filter should be added to the end of the list. When the filter is
deinstalled, care should be taken not to disturb the other strings (other ISAPI filters that may have been
added or removed since the DLL in question was installed).

DLL Entry Points
Every filter is contained in a separate DLL with two common entry points: GetFilterVersion and
HttpFilterProc. When the DLL is loaded, GetFilterVersion is called. This lets the filter know the version
of the server and also lets the filter tell the server the filter version and the events that the filter is
interested in.

After this, the server will call the filter's HttpFilterProc entry point with appropriate notifications. Note that
filters should register only for notifications that the filter needs to see ¾ some filter notifications are very
expensive in terms of CPU resources and I/O throughput, and can have a significant effect on the speed
and scalability of the Microsoft Internet Server.

BOOL WINAPI GetFilterVersion(
        HTTP_FILTER_VERSION *pVer
     );

DWORD WINAPI HttpFilterProc(
        HTTP_FILTER_CONTEXT *pfc,
        DWORD notificationType,
        VOID *pvNotification
     );

Using ISAPI Filter Functions
When the server starts up, it reads the values and loads the DLLs listed. It then calls the
GetFilterVersion entry point to exchange version information and determine the requested notifications
and the order in which to deliver them. As events occur, the server will notify each filter application
registered for an event in the priority order requested by GetFilterVersion. This is accomplished by
calling the HttpFilterProc entry point. In the event of a tie, the order listed in the registry is used.

Every ISAPI filter DLL must export at least two entry points: the GetFilterVersion and the HttpFilterProc.

When the GetFilterVersion entry point is called, an HTTP_FILTER_VERSION structure is presented
which must be filled out with the version information, the requested events, and a priority level. ISAPI filter
applications should register only for the events that are immediately required, because registering for
unnecessary events can have a significant, negative impact on performance and scalability.

After this first exchange, every time the server processes one of the available events, it will call any filters
that have been registered for that event. The order in which the server calls the filters depends first on the
priority specified in the dwFlags member of HTTP_FILTER_VERSION by GetFilterVersion. In the event
that two or more different filters have registered for the same event at the same priority, the order that the
filters were loaded from the registry determines the order in which they will be called.

When the HttpFilterProc entry point is called, the filter will typically perform a switch on the
notificationType parameter to determine what action to take. For example, an encryption or compression
filter will probably register for reading and writing raw data, while a logging filter will probably only register
for the log event. Most filters will also register for the end of the net session event. This event is an
opportune time to recycle any buffers used by that client request.

For performance reasons, most filters usually keep a pool of filter buffers and only allocate or free them
when the pool becomes empty or too large to save on the overhead of the memory management. One
useful callback is the AllocMem callback in the HTTP_FILTER_CONTEXT structure. This allocates
memory that is automatically freed when the communication with the client is terminated. As noted, this
can have a negative impact on performance, but with careful use it can be a valuable tool.

Filters
The following filters are used by the Internet Server.

GetFilterVersion

HttpFilterProc

GetFilterVersion
The GetFilterVersion function is the first entry point called by the Internet Server.

BOOL WINAPI GetFilterVersion(
        PHTTP_FILTER_VERSION pVer
     );

Parameters
pVer

The HTTP_FILTER_VERSION structure pointed to by this parameter contains both the version
information for the server and the fields for the client to indicate version number, notifications, and
priority desired. There is also a space for the filter application to register a description of itself.

Return Values
The return code indicates whether the filter was properly loaded. If the filter returns FALSE, the filter
application will be unloaded and will not receive any notifications.

Remarks
The GetFilterVersion function, implemented in the ISAPI filter application, is the first entry point called by
the Internet Server. It is important to specify only the necessary notifications in the pVer->dwFlags
member. Some notifications can have a strong impact on performance and scalability.

In addition to the notification flags described under the HttpFilterProc function, there are also priority
flags to specify the order in which to call the filter:

Value Meaning
SF_NOTIFY_ORDER_DEFA
ULT

Load the filter at the
default priority
(recommended).

SF_NOTIFY_ORDER_LOW Load the filter at a
low priority.

SF_NOTIFY_ORDER_MEDIU
M

Load the filter at a
medium priority.

SF_NOTIFY_ORDER_HIGH Load the filter at a
high priority.

Note    Every filter is contained in a separate DLL with two common entry points: GetFilterVersion and
HttpFilterProc. When the DLL is loaded, GetFilterVersion is called. This lets the filter know the server
version and also lets the filter tell the server the filter version and the events that the filter is interested in.

After this, the server calls the filter's HttpFilterProc entry point with appropriate notifications. Note that
filters should only register for notifications the filter needs to see ¾ some filter notifications are very
expensive in terms of CPU resources and I/O throughput, and can have a significant effect on the speed
and scalability of the Microsoft Internet Server.

BOOL WINAPI GetFilterVersion(
        HTTP_FILTER_VERSION *pVer
     );

DWORD WINAPI HttpFilterProc(
        HTTP_FILTER_CONTEXT *pfc,
        DWORD notificationType,
        VOID *pvNotification
     );

See Also
HttpFilterProc, HTTP_FILTER_VERSION

HttpFilterProc
The HttpFilterProc records notification of events from the server.

DWORD WINAPI HttpFilterProc(
        PHTTP_FILTER_CONTEXT pfc,
        DWORD notificationType,
        LPVOID pvNotification
     );

Parameters
pfc

The HTTP_FILTER_CONTEXT structure pointed to by this parameter contains context information.
The pFilterContext member can be used by the filter to associate any context information with the
HTTP request. The SF_NOTIFY_END_OF_NET_SESSION notification can be used to release any
such context information.

notificationType
This indicates the type of event being processed. Valid types are:
SF_NOTIFY_SECURE_PORT

Notify application only for sessions over a secure port.
SF_NOTIFY_NONSECURE_PORT

Notify application only for sessions over a nonsecure port.
SF_NOTIFY_READ_RAW_DATA

Allow the application to see the raw data. The data returned will contain both headers and data.
SF_NOTIFY_PREPROC_HEADERS

The server has preprocessed the headers.
SF_NOTIFY_AUTHENTICATION

The server is authenticating the client.
SF_NOTIFY_URL_MAP

The server is mapping a logical URL to a physical path.
SF_NOTIFY_SEND_RAW_DATA

The server is sending raw data back to the client.
SF_NOTIFY_LOG

The server is writing information to the server log.
SF_NOTIFY_END_OF_NET_SESSION

The session with the client is ending.
SF_NOTIFY_ACCESS_DENIED

Allows an ISAPI Filter to be notified any time the server is about to return a "401 Access Denied".   
This lets the Filter analyze the failure and return a custom message.

pvNotification
The notification-specific structure.

Notification
Type

pvNotification points to

SF_NOTIFY_RE
AD_RAW_DATA

HTTP_FILTER_RAW_DATA

SF_NOTIFY_SE
ND_RAW_DATA

HTTP_FILTER_RAW_DATA

SF_NOTIFY_PR
EPROC_HEADE
RS

HTTP_FILTER_PREPROC_H
EADERS

SF_NOTIFY_AU
THENTICATION

HTTP_FILTER_AUTHENT

SF_NOTIFY_UR
L_MAP

HTTP_FILTER_URL_MAP

SF_NOTIFY_LO
G

HTTP_FILTER_LOG

SF_NOTIFY_AC
CESS_DENIED

HTTP_FILTER_ACCESS_DE
NIED

Return Values
The return codes indicate how the application handled the event. Possible return codes are:

SF_STATUS_REQ_FINISHED
The filter has handled the HTTP request. The server should disconnect the session.

SF_STATUS_REQ_FINISHED_KEEP_CONN
This is the same as SF_STATUS_REQ_FINISHED, except that the server should keep the TCP
session open if the option was negotiated.

SF_STATUS_REQ_NEXT_NOTIFICATION
The next filter in the notification chain should be called.

SF_STATUS_REQ_HANDLED_NOTIFICATION
This filter handled the notification. No other handlers should be called for this particular notification
type.

SF_STATUS_REQ_ERROR
An error occurred. The server should call GetLastError and indicate the error to the client.

SF_STATUS_REQ_READ_NEXT
The filter is an opaque stream filter and the session parameters are being negotiated. This is valid
only for raw-read notification.

Remarks
This is where the core work of the ISAPI filter applications is done. The various structures pointed to by
pvNotification contain data and function pointers specific to these operations. See the structure details for
more information.

Note    Every filter is contained in a separate DLL with two common entry points: GetFilterVersion
and HttpFilterProc. When the DLL is loaded, GetFilterVersion is called. This lets the filter know the
server version and also lets the filter tell the server the filter version and the events that the filter is
interested in.

After this, the server calls the filter's HttpFilterProc entry point with appropriate notifications. Note that
filters should only register for notifications the filter needs to see ¾ some filter notifications are very
expensive in terms of CPU resources and I/O throughput, and can have a significant effect on the speed
and scalability of the Microsoft Internet Server.

BOOL WINAPI GetFilterVersion(
        HTTP_FILTER_VERSION *pVer
     );

DWORD WINAPI HttpFilterProc(
        HTTP_FILTER_CONTEXT *pfc,
        DWORD notificationType,
        VOID *pvNotification
     );

See Also

HTTP_FILTER_CONTEXT, HTTP_FILTER_RAW_DATA, HTTP_FILTER_PREPROC_HEADERS,
HTTP_FILTER_AUTHENT, HTTP_FILTER_URL_MAP, HTTP_FILTER_LOG

Functions
The following functions are used by the Internet Server.

GetServerVariable

ReadClient

ServerSupportFunction

WriteClient

GetServerVariable
The GetServerVariable function retrieves information about a connection or about the server itself.

BOOL WINAPI GetServerVariable(
        HCONN hConn,
        LPSTR lpszVariableName,
        LPVOID lpvBuffer,
        LPDWORD lpdwSizeofBuffer
     );

Parameters
hConn

[in] The connection handle.
lpszVariableName

[in] A null-terminated string indicating which variable is being requested.
lpvBuffer

[out] A pointer to the buffer to receive the requested information.
lpdwSizeofBuffer

[in/out] A pointer to DWORD indicating the size of the buffer pointed to by lpvBuffer. On successful
completion, the DWORD contains the size    of bytes transferred into the buffer, including the null-
terminating byte.

Return Values
If the function is successful, a return value of TRUE is returned. If the function fails, a return value of
FALSE is returned. The Win32 GetLastError function can be used to determine why the call failed.

Possible error values include:

Value Meaning
ERROR_INVALID_PARAMETE
R

Bad connection
handle.

ERROR_INVALID_INDEX Bad or
unsupported
variable identifier.

ERROR_INSUFFICIENT_BUFF
ER

Buffer too small.
The required
buffer size is
lpdwSize.

ERROR_MORE_DATA Buffer too small.
Only part of the
data is returned.
The total size of
the data is not
known.

ERROR_NO_DATA The data
requested is not
available.

Remarks
The GetServerVariable function copies information into a buffer supplied by the caller. The information
can include CGI variables and information relating to an HTTP connection or to the server itself.

Possible lpszVariableNames include:

AUTH_TYPE This contains the type of
authentication used. For
example, the string will be
"basic" if basic authentication
is used, and it will be "NTLM"
for Challenge-response.
Other authentication schemes
will have other strings. Since
new authentication types can
be added to the Internet
Server, it is not possible to list
all the string possibilities. If
the string is empty, then no
authentication is used.

CONTENT_LENGT
H

The number of bytes which
the script can expect to
receive from the client.

CONTENT_TYPE The content type of the
information supplied in the
body of a POST request.

PATH_INFO Additional path information,
as given by the client. This
consists of the trailing part of
the URL after the script name,
but before the query string, if
any.

PATH_TRANSLATE
D

This is the value of
PATH_INFO, but with any
virtual path name expanded
into a directory specification.

QUERY_STRING The information which follows
the "?" in the URL that
referenced this script.

REMOTE_ADDR The IP address of the client or
agent of the client (for
example, gateway or firewall)
that sent the request.

REMOTE_HOST The host name of the client or
agent of the client (for
example, gateway or firewall)
that sent the request.

REMOTE_USER This contains the user name
supplied by the client and
authenticated by the server.
This comes back as an empty
string when the user is
anonymous (but
authenticated).

UNMAPPED_REMO
TE_USER

This is the user name before
any ISAPI ApplicationsPI
Filter mapped the user
making the request to an NT

user account (which appears
as REMOTE_USER).

REQUEST_METHO
D

The HTTP request method.

SCRIPT_NAME The name of the script
program being executed.

SERVER_NAME The server's host name, or IP
address, as it should appear
in self-referencing URLs.

SERVER_PORT The TCP/IP port on which the
request was received.

SERVER_PORT_S
ECURE

A string of either zero or 1.    If
the request is being handled
on the secure port, then this
will be 1. Otherwise, it will be
zero.

SERVER_PROTOC
OL

The name and version of the
information retrieval protocol
relating to this request. This is
usually HTTP/1.0.

SERVER_SOFTWA
RE

The name and version of the
Web server under which the
ISAPI ApplicationsPI DLL
program is running.

ALL_HTTP All HTTP headers that were
not already parsed into one of
the previous variables. These
variables are of the form
HTTP_<header field name>.
The headers consist of a null-
terminated string with the
individual headers separated
by line feeds.

HTTP_ACCEPT Special-case HTTP header.
Values of the Accept: fields
are concatenated, and
separated by a comma (",").
For example, if the following
lines are part of the HTTP
header:
      accept: */*; q=0.1
      accept: text/html
      accept: image/jpeg
the HTTP_ACCEPT variable
will have a value of:
      /; q=0.1, text/html,
image/jpeg

URL (new for
version 2.0)

Gives the base portion of the
URL.

Note    In respect to Auth_Type, if the string is not empty it does not mean the user was
authenticated, (if the authentication scheme is not "basic" or "NTLM").    The server allows
authentication schemes it does not natively understand since an ISAPI ApplicationsPI Filter may be

able to handle that particular scheme.

ReadClient
The ReadClient function reads data from the body of the client's HTTP request.

BOOL ReadClient(
        HCONN hConn,
        LPVOID lpvBuffer,
        LPDWORD lpdwSize
     );
Parameters

hConn
[in] A connection handle.

lpvBuffer
[out] A pointer to the buffer area to receive the requested information.

lpdwSize
[in/out] A pointer to DWORD indicating the number of bytes available in the buffer. On return,
lpdwSize will contain the number of bytes actually transferred into the buffer.

Return Values
If the function is successful, a value of TRUE is returned. If an error occurs, a value of FALSE is returned.
The GetLastError function can be called to determine the cause of the error.

Remarks
The ReadClient function reads information from the body of the Web client's HTTP request into the buffer
supplied by the caller. Thus, the call can be used to read data from an HTML form that uses the POST
method. If more than lpdwSize bytes are immediately available to be read, ReadClient will return after
transferring that amount of data into the buffer. Otherwise, it will block and wait for data to become
available. If the socket on which the server is listening to the client is closed, it will return TRUE, but with
zero bytes read.

ServerSupportFunction
The ServerSupportFunction function is a callback function supplied in the
EXTENSION_CONTROL_BLOCK (ECB). It supports several auxiliary functions not covered by other
callback functions in the ECB.

BOOL ServerSupportFunction(
        HCONN ConnID,
        DWORD dwHSERequest,
        LPVOID lpvBuffer,
        LPDWORD lpdwSize,
        LPDWORD lpdwDataType
     );
Parameters

ConnID
A logical connection identifier for identifying the client to whom the response data should be sent.

dwHSERequest
A DWORD containing the HTTP Server Extension Request type, which indicates the requested
functions by the ISAPI application. The various values are:
HSE_REQ_SEND_URL_REDIRECT_RESP

This sends a 302 (URL Redirect) message to the client. No further processing is needed after the
call. This operation is similar to specifying "URI: <URL>" in a CGI script header. The lpvBuffer
variable should point to a null-terminated string of URL. The variable lpdwSize should have the
size of lpvBuffer. The variable lpdwDataType is ignored.

HSE_REQ_SEND_URL
This sends the data specified by the URL to the client as if the client had requested that URL. The
null-terminated URL pointed to by lpvBuffer must be on the server and must not specify protocol
information (that is, it must begin with a "/"). No further processing is required after this call. The
parameter lpdwSize points to a DWORD holding the size of lpvBuffer. The parameter
lpdwDataType is ignored.

HSE_REQ_SEND_RESPONSE_HEADER
This sends a complete HTTP server response header including the status, server version,
message time, and MIME version. The ISAPI application should append other HTTP headers such
as the content type and content length, followed by an extra "\r\n". This function only takes
textual data, up to the first '\0' terminator

HSE_REQ_MAP_URL_TO_PATH
The lpvBuffer parameter is a pointer to the buffer that contains the logical path on entry and the
physical path on exit. The lpdwSize parameter is a pointer to the DWORD containing the size of
the buffer passed in lpvBuffer on entry, and the number of bytes placed in the buffer on exit. The
lpdwDataType parameter is ignored.

HSE_REQ_DONE_WITH_SESSION
If the server extension wants to hold on to the session because of extended processing
requirements, it needs to tell the server when the session is finished so the server can close it and
free the related structures. The parameters lpvBuffer, lpdwSize, and lpdwDataType are all ignored.

lpvBuffer
A pointer to the buffer that contains the primary argument required for the support function requested.

lpdwSize
A pointer to a DWORD that contains the size of data that is passed in the buffer pointed to by
lpvBuffer. This parameter may be unused for several of the support function options.

lpdwDataType
A pointer to a DWORD containing a pointer, flags, or secondary arguments required for the specified
support function.

Return Values
If the function is successful, a value of TRUE is returned. If an error occurs, a value of FALSE is returned.
The GetLastError function can be called to determine the cause of the error.

Remarks
The ServerSupportFunction function provides several support functions that are not covered directly by
ECB or the standard callback function. The following list describes the various requests that can be made
using the ServerSupportFunction function:

1. dwHSERRequest: HSE_REQ_IO_COMPLETION
lpvBuffer

A pointer to callback function PFN_HSE_IO_COMPLETION.
lpdwSize

This is ignored.
LpdwDataType

A pointer of type (PVOID) which is used as the context.

This option lets the ISAPI application set a callback function and context to use for handling
asynchronous I/O operations. The callback function is used only if the function pointer passed is non-
NULL. Any context value is allowed. If multiple calls are made for this option, the values used in the most
recent call to ServerSupportFunction will be used (all old values will be lost). The callback function is
defined as:

typedef VOID (WINAPI * PFN_HSE_IO_COMPLETION)(
 IN EXTENSION_CONTROL_BLOCK * pECB,
 IN PVOID pContext,
 IN DWORD cbIO,
 IN DWORD dwError);

In case of errors during asynchronous I/O processing, the server makes a single call to the callback
function. It is the responsibility of the ISAPI application to do the cleanup during the call.

2. dwHSERRequest: HSE_REQ_TRANSMIT_FILE
lpvBuffer

A pointer to the HSE_TF_INFO object.
LpdwSize

This is ignored.
LpdwDataType

This is ignored.

This option lets the ISAPI application use TransmitFile to send a file (faster) to the client. The server
performs this operation asynchronously. The application should either submit a callback function (and
context) by setting the values in the HSE_TF_INFO object passed in or should call the
ServerSupportFucntion function with HSE_REQ_IO_COMPLETION.

If none of the above is done, this call will fail and the server will return an error
(ERROR_INVALID_PARAMETER). Also, the application should specify the file handle in the structure that
is passed in.

If all parameters are present, the server submits this operation to its internal asynchronous I/O queue and
returns to the caller. At this point, the ISAPI application can return HSE_STATUS_PENDING (if returning
from HttpExtenionProc) and later use HSE_DONE_WITH_SESSION when the callback occurs
indicating that the I/O was completed.

typedef struct _HSE_TF_INFO {

 //
 // callback and context information
 // the callback function will be called when IO is completed.
 // the context specified will be used during such callback.
 //
 // These values (if non-NULL) will override the one set by calling
 // ServerSupportFunction() with HSE_REQ_IO_COMPLETION
 //
 PFN_HSE_IO_COMPLETION pfnHseIO;
 PVOID pContext;

 // file should have been opened with FILE_FLAG_SEQUENTIAL_SCAN
 HANDLE hFile;

 //
 // HTTP header and status code
 // These fields are used only if HSE_IO_SEND_HEADERS
 // is present in dwFlags
 //
 LPCSTR pszStatusCode; // HTTP Status Code eg: "200 OK"

 DWORD BytesToWrite; // value of "0" means send entire file
 DWORD Offset; // offset value within file to start from

 PVOID pHead; // pointer to Headers to be sent before file
 DWORD HeadLength; // header length
 PVOID pTail; // pointer to Tail to be sent after file data
 DWORD TailLength; // tail length

 DWORD dwFlags; // includes HSE_IO_DISCONNET_AFTER_SEND, ...

} HSE_TF_INFO, * LPHSE_TF_INFO;

A special flag, HSE_IO_DISCONNECT_AFTER_SEND, can be used if the application is mainly
concerned with transmitting the file and closing the connection. This flag enables the server to optimally
reuse its internal buffers and sockets for future connections. Thus, it improves the perceived latency by
optimally using system features. However, the application will not be able to do any further data
transmission if this flag is indicated, because the session to the client will be torn down.

Another special flag, HSE_IO_SEND_HEADER, can be used for transmitting custom header information
to the client. The ISAPI application can store the status code (for example, "200 OK") in the
pszStatusCode member of the HSE_TF_INFO structure. When the header flag is turned on, the Internet
server will automatically construct the appropriate HTTP header and send it to the client along with the file
contents.

If this flag is used for header transmission, then the ISAPI application should not send its own header
using the ServerSupportFunction(HSE_REQ_SEND_RESPONSE_HEADERS) function. In addition to
the status code, the application can also include a special head buffer for each data chunk that it
transmits from a file.

The file handle specified, hFile, should be opened using the Win32 CreateFile function with the
FILE_FLAG_SEQUENTIAL_SCAN and FILE_FLAG_OVERLAPPED turned on. The head and tail buffers
specified by pHead and pTail are optional.

Asynchronous I/O Support
Previous versions of this documentation have supported synchronous I/O operations using the callback
functions, ReadClient and WriteClient. However, the ability to support asynchronous operations is
important because it frees up a server pool thread from being blocked in completing the I/O operation. In
addition, the Internet server engine already has built-in support to manage asynchronous I/O operations
using the completion ports and server thread pool.

Support for asynchronous I/O operations were initially planned for a later version of this documentation.
However, because of the need to support asynchronous I/O operations, a Microsoft-specific extension
has been provided in this documentation. Thus, asynchronous write operations are supported in this
documentation using the existing callback function WriteClient, with a special flag indicating that the
operation has to be performed asynchronously. In addition, this documentation also provides a
mechanism for requesting that the server transmit a file using the TransmitFile function. This function is a
Win32 function that supports fast transmission of a file-from-file system over any stream sockets. It is
supported in the Microsoft Windows Sockets implementation in Windows NT 3.51 and later.

WriteClient
The WriteClient function is a callback function supplied in the EXTENSION_CONTROL_BLOCK (ECB)
for a request sent to the ISAPI application. This function sends data present in the given buffer to the
client that made the request.

BOOL WriteClient(
        HCONN ConnID,
        LPVOID Buffer,
        LPDWORD lpdwBytesr,
        DWORD dwReserved
     );
Parameters

ConnID
[in] A logical connection identifier for identifying the client to whom the response data should be sent.

Buffer
[in] A pointer to the buffer containing the data to be sent.

lpdwBytes
[in/out] A pointer to a DWORD that contains the number of bytes in the buffer that need to be sent out
when the call is made, and contains the number of bytes of data successfully sent out for
synchronous write operations. For asynchronous write operations, the returned value has no
meaning.

dwReserved
A DWORD containing flags indicating how the I/O operation should be handled. The following flags
are supported:

Value Meaning
HSE_IO_SYNC This indicates that the I/O

operation should be done
synchronously.

HSE_IO_ASYN
C

This indicates that the I/O
operation should be done
asynchronously. The ISAPI
application should have made
a call to the
ServerSupportFunction(HSE
_REQ_IO_COMPLETION)
function and submitted a
callback function and context
value for handling completion
of asynchronous operations.

Return Values
If the function is successful, a value of TRUE is returned. If an error occurs, a value of FALSE is returned.
The GetLastError function can be called to determine the cause of the error.

Remarks
The WriteClient function attempts to write the data in the supplied buffer to the socket in which the client
request came. For synchronous writes, it attempts to the write in the called thread and the I/O may block
trying to send the data to the client. On completion, the WriteClient function returns the number of bytes
sent in lpdwBytes.

For asynchronous writes, the WriteClient function submits the write operation to the asynchronous thread
queue and returns from the call immediately. At this point, the ISAPI application can choose to do more

background processing or return from the HttpExtensionProc function with a HSE_STATUS_PENDING.
When the I/O operation is completed, the server calls the callback function submitted by the ISAPI
application with the ECB, context value, number of bytes sent, and error codes (if there are any errors).

It is the responsibility of the ISAPI application to do further processing and to use the
ServerSupportFunction(HSE_DONE_WITH_SESSION) function to notify the server when it is done
processing the request.

Only one outstanding asynchronous I/O operation is permitted per request. This includes asynchronous
WriteClient, asychronous TransmitFile, or a ServerSupportFunction call with HSE_REQ_SEND_URL.

Asynchronous I/O Support
Previous versions of this documentation have supported synchronous I/O operations using the callback
functions, ReadClient and WriteClient. However, the ability to support asynchronous operations is
important because it frees up a server pool thread from being blocked in completing the I/O operation. In
addition, the Internet server engine already has built-in support to manage asynchronous I/O operations
using the completion ports and server thread pool.

Support for asynchronous I/O operations were initially planned for a later version of this documentation.
However, because of the need to support asynchronous I/O operations, a Microsoft-specific extension
has been provided in this documentation. Thus, asynchronous write operations are supported in this
documentation using the existing callback function WriteClient, with a special flag indicating that the
operation has to be performed asynchronously. In addition, this documentation also provides a
mechanism for requesting that the server transmit a file using the TransmitFile function. This function is a
Win32 function that supports fast transmission of a file-from-file system over any stream sockets. It is
supported in the Microsoft Windows Sockets implementation in Windows NT 3.51 and later.

Modules
 The following module is used by the Internet Server.

Http Server Extension Interface

HTTP Server Extension Interface
Module Name: HttpExt.h

The following section contains structure definitions and prototypes for version 1.0 of the HTTP Server
Extension interface. See specifically Converting Existing CGI Scripts to ISAPI Application DLLs and
Important Notes.

Structures
The following structures are used by the Internet Server.

HTTP_FILTER_ACCESS_DENIED

HTTP_FILTER_AUTHENT

HTTP_FILTER_CONTEXT

HTTP_FILTER_LOG

HTTP_FILTER_PREPROC_HEADERS

HTTP_FILTER_RAW_DATA

HTTP_FILTER_VERSION

HTTP_FILTER_URL_MAP

HTTP_FILTER_ACCESS_DENIED
Bitfield indicating the requested resource has been denied by the server due to a logon failure, an ACL on
a resource, an ISAPI Filter, or an ISAPI application/CGI application.

SF_DENIED_BY_CONFIG can appear with SF_DENIED_LOGON if the server configuration did not allow
the user to log on.

#define SF_DENIED_LOGON 0x00000001
#define SF_DENIED_RESOURCE 0x00000002
#define SF_DENIED_FILTER 0x00000004
#define SF_DENIED_APPLICATION 0x00000008

#define SF_DENIED_BY_CONFIG 0x00010000

typedef struct _HTTP_FILTER_ACCESS_DENIED (added in Version 2.0)

{
const CHAR * pszURL; Requesting URL
const CHAR * pszPhysicalPath; Physical path of resource
DWORD dwReason; Bitfield of SF_DENIED flags
}

HTTP_FILTER_ACCESS_DENIED, *PHTTP_FILTER_ACCESS_DENIED

The server will automatically include the supported authentication schemes when an ISAPI application,
Filter or CGI Script returns a "401 Access Denied".

HTTP_FILTER_AUTHENT
typedef struct _HTTP_FILTER_AUTHENT
{
 CHAR * pszUser;
 DWORD cbUserBuff;
 CHAR * pszPassword;
 DWORD cbPasswordBuff;
} HTTP_FILTER_AUTHENT, *PHTTP_FILTER_AUTHENT;

Members

pszUser
[in/out] A pointer to a string containing the user name for this request. An empty string indicates an
anonymous user.

cbUserBuff
[in] The size of the buffer pointed to by pszUser. This is guaranteed to be at least
SF_MAX_USERNAME.

pszPassword
[in/out] A pointer to a string containing the password for this request.

cbPasswordBuff
[in] The size of the buffer pointed to by pszPassword. This is guaranteed to be at least
SF_MAX_PASSWORD.

Remarks
When the server is about to authenticate the client, this structure is pointed to by the pvNotification in the
HttpFilterProc when notificationType is SF_NOTIFY_AUTHENTICATION. This can be used to implement
a different authentication scheme.

See Also
HttpFilterProc

HTTP_FILTER_CONTEXT
typedef struct _HTTP_FILTER_CONTEXT
{
 DWORD cbSize;
 DWORD Revision;
 PVOID ServerContext;
 DWORD ulReserved;
 BOOL fIsSecurePort;
 PVOID pFilterContext;
 BOOL (WINAPI * GetServerVariable) (
 struct _HTTP_FILTER_CONTEXT * pfc,
 LPSTR lpszVariableName,
 LPVOID lpvBuffer,
 LPDWORD lpdwSize
);
BOOL (WINAPI * AddResponseHeaders) (
 struct _HTTP_FILTER_CONTEXT * pfc,
 LPSTR lpszHeaders,
 DWORD dwReserved
);
BOOL (WINAPI * WriteClient) (
 struct _HTTP_FILTER_CONTEXT * pfc,
 LPVOID Buffer,
 LPDWORD lpdwBytes,
 DWORD dwReserved
);
VOID * (WINAPI * AllocMem) (
 struct _HTTP_FILTER_CONTEXT * pfc,
 DWORD cbSize,
 DWORD dwReserved
);
BOOL (WINAPI * ServerSupportFunction) (
 struct _HTTP_FILTER_CONTEXT * pfc,
 enum SF_REQ_TYPE sfReq,
 PVOID pData,
 DWORD ul1,
 DWORD ul2
);
} HTTP_FILTER_CONTEXT, *PHTTP_FILTER_CONTEXT;

Members

cbSize
[in] The size of this structure, in bytes.

Revision
[in] The revision level of this structure. This is less than or equal to the version of the document,
HTTP_FILTER_REVISION.

ServerContext
[in] Reserved for server use.

ulReserved
[in] Reserved for server use.

fIsSecurePort
[in] A value of TRUE indicates that this event is over a secure port.

pFilterContext
[in/out] A pointer to be used by the filter for any context information that the filter wants to associate
with this request. Any memory associated with this request can be safely freed during the
SF_NOTIFY_END_OF_NET_SESSION notification.

BOOL        (WINAPI * GetServerVariable) (
        struct _HTTP_FILTER_CONTEXT *pfc,
        LPSTR lpszVariableName,
        LPVOID lpvBuffer,
        LPDWORD lpdwSize
     );

A pointer to a function to retrieve information about the server and this connection. See
GetServerVariable for more information.

Parameters
pfc

The pfc passed to HttpFilterProc.
lpszVariableName

The server variable to retrieve.
lpvBuffer

The buffer in which to store the value of the variable.
lpdwSize

The size of the buffer pointed to by lpvBuffer.

BOOL        (WINAPI * AddResponseHeaders) (
        struct _HTTP_FILTER_CONTEXT *pfc,
        LPSTR lpszHeaders,
        DWORD dwReserved
     );

A pointer to a function that adds a header to the HTTP response. See ServerSupportFunction,
HSE_SEND_RESPONSE_HEADER, for more information.

Parameters
pfc

The pfc passed to HttpFilterProc.
lpszHeaders

A pointer string containing the headers to add.
dwReserved

Reserved for future use. This must be zero.

BOOL        (WINAPI *)    (
        struct _HTTP_FILTER_CONTEXT *pfc,
.      LPVOID buffer,
        LPDWORD lpdwBytes,
        DWORD dwReserved
     );

A pointer to a function that sends raw data back to the client. See WriteClient for more information.

Parameters
pfc

The pfc passed to HttpFilterProc.

buffer
A buffer containing data to send to the client.

lpdwBytes
The size of the buffer pointed to by buffer.

dwReserved
Reserved for future use.

VOID *          (WINAPI * AllocMem) (
struct _HTTP_FILTER_CONTEXT *pfc,
        DWORD cbSize,
        DWORD dwReserved
     );

A pointer to a function used to allocate memory. Any memory allocated with this function will automatically
be freed when the request is completed.

Parameters
pfc

The pfc passed to HttpFilterProc.
cbSize

The size of the buffer to allocate.
dwReserved

Reserved for future use.

BOOL        (WINAPI * ServerSupportFunction) (
struct _HTTP_FILTER_CONTEXT *pfc,
        enum SF_REQ_TYPE sfReq,
        PVOID pData,
        DWORD ul1,
        DWORD ul2
       );

A pointer to a function used to extend the ISAPI filter functions. Parameters are specific to the extensions.
Possible values for sfReq are SF_REQ_SEND_RESPONSE_HEADER,
SF_REQ_ADD_HEADERS_ON_DENIAL, and SF_REQ_SET_NEXT_READ_SIZE.

SF_REQ_SEND_RESPONSE_HEADER
This sends a complete HTTP server response header including the status, server version, message
time, and MIME version. Server extensions should append other information, such as content type
and content length, followed by an extra "\r\n".

Parameters
pData

A zero-terminated string pointing to optional status string (for example, "401 Access Denied") or NULL
for the default response of "200 OK".

ul1
A zero-terminated string pointing to optional data to be appended and sent with the header. If NULL,
the header will be terminated with an empty line.

SF_REQ_ADD_HEADERS_ON_DENIAL
If the server denies the HTTP request, add the specified headers to the server error response. This
allows an authentication filter to advertise its services without filtering every request. Generally, the
headers will be WWW-Authenticate headers with custom authentication schemes. However, no
restriction is placed on which headers can be specified.

Parameters
pData

A zero-terminated string pointing to one or more header lines with terminating "\r\n."
SF_REQ_SET_NEXT_READ_SIZE

This is used only by raw data filters that return SF_STATUS_READ_NEXT.

Parameters
ul1

The size in bytes for the next read.

HTTP_FILTER_LOG
typedef struct _HTTP_FILTER_LOG
{
 const CHAR * pszClientHostName;
 const CHAR * pszClientUserName;
 const CHAR * pszServerName;
 const CHAR * pszOperation;
 const CHAR * pszTarget;
 const CHAR * pszParameters;
 DWORD dwHttpStatus;
 DWORD dwWin32Status;
} HTTP_FILTER_LOG, *PHTTP_FILTER_LOG;

Members

pszClientHostName
[in/out] The client's host name.

pszClientUserName
[in/out] The client's user name.

pszServerName
[in/out] The name of the server the client is connected to.

pszOperation
[in/out] The HTTP command.

pszTarget
[in/out] The target of the HTTP command.

pszParameters
[in/out] The parameters passed to the HTTP command.

dwHttpStatus
[in/out] The HTTP return status.

dwWin32Status
[in/out] The Win32 error code.

Remarks
When the server is about to log information to the server log file, this structure is pointed to by the
pvNotification in the HttpFilterProc when notificationType is SF_NOTIFY_LOG. The strings cannot be
changed, but pointers can be replaced. If string pointers are changed, the memory they point to must
have been allocated by the AllocMem callback function in the HTTP_FILTER_CONTEXT structure.

HTTP_FILTER_PREPROC_HEADERS
typedef struct _HTTP_FILTER_PREPROC_HEADERS
{
BOOL (WINAPI * GetHeader) (
 struct _HTTP_FILTER_CONTEXT * pfc,
 LPSTR lpszName,
 LPVOID lpvBuffer,
 LPDWORD lpdwSize
);
BOOL (WINAPI * SetHeader) (
 struct _HTTP_FILTER_CONTEXT * pfc,
 LPSTR lpszName,
 LPSTR lpszValue
);
BOOL (WINAPI * AddHeader) (
 struct _HTTP_FILTER_CONTEXT * pfc,
 LPSTR lpszName,
 LPSTR lpszValue
);
DWORD dwReserved;
} HTTP_FILTER_PREPROC_HEADERS, *PHTTP_FILTER_PREPROC_HEADERS;

Members
BOOL (WINAPI * GetHeader) (

        struct _HTTP_FILTER_CONTEXT * pfc,
        LPSTR lpszName,
        LPVOID lpvBuffer,
        LPDWORD lpdwSizeofBuffer
     );

A pointer to a function that retrieves the specified header value. Header names should include the trailing
colon (":"). The special values "method", "url", and "version" can be used to retrieve the individual portions
of the request line.

Parameters
pfc

The filter context for this request from the pfc passed to the HttpFilterProc.
lpszName

The name of the header to retrieve.
lpvBuffer

A pointer to a buffer of size lpdwSizeofBuffer where the value of the header will be stored.
lpdwSizeofBuffer

This should be set to the size of the buffer lpvBuffer, for example, sizeof(lpvBuffer). After the call, it
contains the number of bytes retrieved including the null terminator. Therefore, for retrieved strings it
is equal to strlen(lpvBuffer)+1.

BOOL (WINAPI * SetHeader) (
        struct _HTTP_FILTER_CONTEXT *pfc,
        LPSTR lpszName,
        LPSTR lpszValue
     );

A pointer to a function used to change or delete the value of a header.

Parameters
pfc

The filter context for this request from the pfc passed to the HttpFilterProc.
lpszName

A pointer to the name of the header to change or delete.
lpszValue

A pointer to the string to change the header to, or a pointer to "\0" to delete the header.

BOOL (WINAPI * AddHeader) (
        struct _HTTP_FILTER_CONTEXT *pfc,
        LPSTR lpszName,
      LPSTR lpszValue
     );

A pointer to a function to add a header.

Parameters
pfc

The filter context for this request from the pfc passed to the HttpFilterProc.
lpszName

A pointer to the name of the header to change or delete.
lpszValue

A pointer to the string to change the header to, or a pointer to "\0" to delete the header.

Remarks
When the server is about to process the client headers, this structure is pointed to by the pvNotification in
the HttpFilterProc when notificationType is SF_NOTIFY_PREPROC_HEADERS.

See Also
HttpFilterProc

HTTP_FILTER_RAW_DATA
typedef struct _HTTP_FILTER_RAW_DATA
{
 PVOID pvInData;
 DWORD cbInData;
 DWORD cbInBuffer;
 DWORD dwReserved;
} HTTP_FILTER_RAW_DATA, *PHTTP_FILTER_RAW_DATA;

Members

pvInData
[in] A pointer to the data buffer (input or output).

cbInData
[in] The amount of data in the buffer pointed to by pvInData.

cbInBuffer
[in] The size of the buffer pointed to by pvInData.

dwReserved
[in] Reserved for future use.

Remarks
This structure is passed to the SF_NOTIFY_READ_RAW_DATA and SF_NOTIFY_SEND_RAW_DATA
notification routines.

See Also
HttpFilterProc

HTTP_FILTER_URL_MAP
typedef struct _HTTP_FILTER_URL_MAP
{
 const CHAR * pszURL;
 CHAR * pszPhysicalPath;
 DWORD cbPathBuff;
} HTTP_FILTER_URL_MAP, *PHTTP_FILTER_URL_MAP;

Members

pszURL
[in] A pointer to the URL that is being mapped to a physical path.

pszPhysicalPath
[in/out] A pointer to the buffer where the physical path is stored.

cbPathBuff
[in] The size of the buffer pointed to by pszPhysicalPath.

Remarks
When the server is about to map the specified URL to a physical path, this structure is pointed to by the
pvNotification in the HttpFilterProc when notificationType is SF_NOTIFY_URL_MAP. Filters can modify
the physical path in place.

See Also
HttpFilterProc

HTTP_FILTER_VERSION
typedef struct _HTTP_FILTER_VERSION
{
 DWORD dwServerFilterVersion;
 DWORD dwFilterVersion;
 CHAR lpszFilterDesc[SF_MAX_FILTER_DESC_LEN+1];
 DWORD dwFlags;
} HTTP_FILTER_VERSION, *PHTTP_FILTER_VERSION;

Members

dwServerFilterVersion
[in] The version of the document used by the server. The version of the current header file is
HTTP_FILTER_REVISION.

dwFilterVersion
[out] The version of the document used by the server. The version of the current header file is
HTTP_FILTER_REVISION.

lpszFilterDesc
[out] The location in which to store a short string description of the ISAPI filter application.

dwFlags
[out] The combination of SF_NOTIFY_* flags to specify which events this application is interested in.
See HttpFilterProc for a list of valid flags.

Remarks
This structure is passed to the application's HttpFilterProc entry point by the server.

See Also
HttpFilterProc

Internet Service Manager
The following section describes the design of the Internet Service Manager (ISM) application and the
Internet Service Manager API set (ISMAPI), which the ISM uses to communicate with the ISM
Configuration DLLs.

The Internet Service Manager is designed to be a dynamic, extendable remote and local administration
tool, which performs no configuration itself, but instead manages a set of configuration DLLs (also
referred to as extension DLLs) to perform configuration tasks. A service is deemed to be "configurable"
by the ISM if a configuration DLL has been loaded by it.

Program Structure
The Internet Service Manager package is divided into two parts¾the main application and a set of
DLLs¾one for each service. The main window of the ISM application is used to control the
administration environment. The DLLs are set up for each service to perform configuration, discovery,
and service status functions. In the first release of the application, we will provide three different DLLs to
administer the Microsoft Internet Server services, namely FTP, WWW, and Gopher.

Internet Service Manager (ISM)
The main application is used to control the loading of each configuration DLL. When the application first
starts, the ISM performs the following tasks:

1. Reads the registry to load preference settings and discover which extension DLLs it needs to load.
2. Loads and initializes each configuration DLL. The configuration DLL is queried on what type of

service it is and what actions it supports.
3. Discovers what configurable services are installed on the local machine and adds them to the

default view.
4. Awaits the user's action. Optionally, the ISM may discover available configurable services on the

network.

Configuration DLLs
Configuration DLLs (also referred to as extension DLLs) are the bridge between the ISM application and
configurable services. A configuration DLL must be able to perform the following tasks for the ISM
application:

1. Return Service Information: Each successfully loaded service DLL tells the manager the name of
the service it supports and the actions it supports. It also provides a bitmap to be shown in the
toolbar and in the configuration views.

2. Configuration: When the user double clicks the server item(s) or selects the Configure menu
item in the main window, the main window issues a call to the related service DLL with the selected
computer names. At this point, the configuration DLL takes over and presents the configuration
dialogs and returns when configuration is completed. This is done modally.

3. Start/Stop/Pause service: When the user selects the Start/Stop/Pause action in the menu bar, the
main window calls the configuration DLL to issue a command to perform the proper action to the
selected servers.

4. Discovery: There are two types of available discovery supported by the ISM application. The first
is INETSLOC discovery, which is supported by all the Internet Servers. If a configuration DLL
manages a type of service that is discoverable in this way, it need not provide a discovery API, but
only a INETSLOC mask. The ISM application then uses this for discovery. Those services not
discoverable in this fashion must provide their own discovery API.

Internet Service Manager Application
The ISM application stores information about the discovered computer and the configurable services that
are available on them. This information can be presented in several different ways, as shown in the
Report View, the Servers View, and the Services View for the Internet Service Manager. In each of
these views, specific services can be included or excluded in the view by selecting the service types
buttons in the toolbar, or selecting them in the View menu. Only selected services will be shown in the
view.

Report View
The Report view presents an alphabetically sorted list of computers and the services running on them.
The list can be sorted by computer name, service name, state, or comment.

{ewc msdncd, EWGraphic, bsd23509 0 /a "SDK.WMF"}

Servers View
The Servers view is a pivot of the services view. It is a tree view which has the computer names as top-
level items, with the configurable services found on that server as child items.

{ewc msdncd, EWGraphic, bsd23509 1 /a "SDK.WMF"}

Services View
The Services view presents the configurable services as the top-level item in a tree view, with each
known server that runs the service enumerated underneath the service.

{ewc msdncd, EWGraphic, bsd23509 2 /a "SDK.WMF"}

Service Features

These are the specific features that are available:

Connecting to a single server

When connecting to a single server, each service on the connected machine that can be administered is
enumerated and added to the list.

Discovery

Discovery can be used to find all configurable services on the network.

Service Administration

When a configurable service (or services) is selected, the Configure menu item and toolbar button are
enabled. Selecting Configure calls the configure API in the service DLL and passes control to it.

Changing Service State (Start/Stop/Pause)

When a controllable service (or services) is selected, the start, stop, and pause menu items and toolbar
buttons are enabled in a manner consistent with the current state of the selected service. Selecting any of
these menu commands calls upon the appropriate configuration DLL to start, stop, pause, or continue the
appropriate service.

Extension DLLs
The Internet Service Manager is designed to support future extension. When a new Internet Server
Service is created, the server service may be added to the administration tool using the following steps:

1. The extension service should add itself to the registry key, \\LocalMachine\Software\InetMgr\
AddOnServices, as described under Registry Layout.

2. The extension service must provide a configuration DLL that contains the five DLL entry points.
Optionally, a help file may be supplied, which should differ in name from the extension DLL only in
that it should have the file extension .hlp.

Once the registry value entry has been added, the Internet Service Manager will automatically load and
initialize the extension DLL when it starts up. It will then be able to administer the new extension service.

Internet Service Manager API (ISMAPI) Interface
The following sections contain the Definitions, Structures, and Functions for the ISMAPI interface.

Definitions

Functions

Structures

Definitions
enum
{
 //
 // the service has invoked de-registration or
 // the service has never called registration.
 //
 INetServiceStopped,
 //
 // the service is running.
 //
 INetServiceRunning,
 //
 // the service is paused.
 //
 INetServicePaused,

};

#define INetServiceUnknown INetServicePaused + 1

//
// Maximum length of some members in characters
//
#define MAX_SERVERNAME_LEN 256 // We allow hostnames
#define MAX_COMMENT_LEN MAXCOMMENTSZ

//
// Dimensions of the toolbar bitmaps
//
#define TOOLBAR_BMP_CX 17
#define TOOLBAR_BMP_CY 17

The INetService* definitions are taken straight from INETSLOC, and are provided here only for services
that do not support INETSLOC discovery.    TOOLBAR_BMP_CX and TOOLBAR_BMP_CY specify the
ideal dimensions of the toolbar bitmap the configuration DLL provides.

//
// Service information flags
//
#define ISMI_INETSLOCDISCOVER 0x00000001 // Use INETSLOC for discovery
#define ISMI_CANCONTROLSERVICE 0x00000002 // Service state can be changed
#define ISMI_CANPAUSESERVICE 0x00000004 // Service is pausable.
#define ISMI_NORMALTBMAPPING 0x00000100 // Use normal toolbar color
mapping
#define ISMI_VIRTUALHOSTS 0x00000200 // Service supports virtual
hosts
#define ISMI_VIRTUALROOTS 0x00000400 // Service supports virtual
roots

#define MAX_SNLEN 20 // Maximum short name length
#define MAX_LNLEN 48 // Maximum long name length

The service information bits are used in the ISMSERVICEINFO structure to specify supported features.

Functions
The following section contains the functions for the ISMAPI interface.

ISMChangeServiceState

ISMConfigureServers

ISMDiscoverServers

ISMQueryServerInfo

ISMQueryServiceInfo

ISMChangeServiceState
DWORD ISMChangeServiceState(

int nNewState,
int * pnCurrentState,
DWORD dwReserved,
LPCTSTR lpstrServers
);

Parameters:

nNewState
The requested state.

pnCurrentState
A pointer to the new state after the function call.

dwReserved
Reserved. Must be zero.

lpstrServers
A double null-terminated list of servers.

Return Values
The return value is a WIN32 error code. Additionally, the pnCurrentState value returns the current state of
the service.

Remarks
This function is called to change the service state (running, stopped, paused) of the selected servers,
provided service control is available. The nNewState parameter can be INetServiceStarted,
INetServiceStopped, or INetServicePaused. The pnCurrentState parameter returns the current state of
the service after the function returns, which may or may not be the same as the state requested. The
dwReserved parameter is reserved for future use and must be zero. The lpstrServers parameter is a
double null-terminated list of servers that the new state is to be applied to.

ISMConfigureServers
DWORD ISMConfigureServers(

HWND hWnd,
DWORD dwReserved,
LPCTSTR lpstrServers
);

Parameters
hWnd

Handle to main window.
dwReserved

Reserved. Must be zero.
lpstrServers

A double null-terminated list of servers.

Return Values
The return value is a WIN32 error code.

Remarks
The ISMConfigureServers function is called with a double null-terminated list of servers that are to be
administered. It is the responsibility of the configuration DLL to provide the dialogs that the user uses to
interact with the service, and it is also the responsibility of the configuration DLL to present multiple-server
configuration to the user. The hWnd parameter is a window handle to the owning application (typically, the
main frame window of the ISM application). The dwReserved parameter is reserved for future expansion
and should be zero. The lpstrServers parameter is a double null-terminated list of server names.

ISMDiscoverServers
DWORD ISMDiscoverServers(

ISMSERVERINFO *psi,
DWORD *pdwBufferSize,
int *cServers
);

Parameters

psi
A pointer to a buffer of ISMSERVERINFO structures.

pdwBufferSize
A pointer to the size of the buffer.

cServers
A pointer to the number of the discovered server.

Return Values
The return value is a WIN32 error code.

Remarks
This function is used only for those configuration DLLs which are not configurable with INETSLOC. The
calling program (for example, ISM) calls this function first with a buffer size of zero. It should then return
the actual size required for the ISMSERVERINFO structures (for example, one structure per discovered
service). The calling program then allocates sufficient storage for this and calls the function again with a
pointer to this buffer. The function fills in this buffer with ISMSERVERINFO structures, one per discovered
service, and returns the number of discovered servers in cServers.

ISMQueryServerInfo
DWORD ISMQueryServerInfo(

LPCTSTR lpstrServerName,
ISMSERVERINFO *psi
);

Parameters
lpstrServerName

A double null-terminated list of servers.
ps

A pointer to a ISMSERVERINFO structure.

Return Values
The return value is a WIN32 error code.

Remarks
This function is called to provide information about the service in respect to a specific server, which may
or may not be running the service. The calling program calls this function to determine if the specified host
is running the service and, if so, the function then fills in the ISMSERVERINFO structure with the
computer name, the comment, and the current state of the service. If the service is not running on the
specified computer, this is reflected in the error return code. As with all ISM API calls, it is the
responsibility of the calling program to fill in the dwSize member of the ISMSERVERINFO structure prior
to calling the function, and it is the responsibility of the configuration DLL to provide version control based
on this size element.

ISMQueryServiceInfo
DWORD ISMQueryServiceInfo(

ISMSERVICEINFO * psi
);

Parameters
psi

A pointer to the SERVICEINFO structure.

Return Values
The return value is a WIN32 error code.

Remarks
This function fills in a ISMSERVICEINFO structure with information about the service and is called
immediately after the configuration DLL has been successfully loaded. The calling program (ISM
presumably) fills in the dwSize element of the ISMSERVICEINFO structure with the size of the structure.
It is the responsibility of the configuration DLL to use this size for version control.

Structures
Important: Many of the following structures have a dwSize member. Functions that fill in these structures
require that this member be filled in before the function is called.

ISMSERVERINFO

ISMSERVICEINFO

ISMSERVERINFO
//
// Standard Server information structure.
//
typedef struct tagISMSERVERINFO
{
 DWORD dwSize; // Structure size
 TCHAR atchServerName[MAX_SERVERNAME_LEN + 1]; // Server name
 TCHAR atchComment[MAX_COMMENT_LEN + 1]; // Server Comment
 int nState; // Service State
} ISMSERVERINFO, *PISMSERVERINFO;

The ISMSERVERINFO structure returns information about a specific computer. The nState member can
specify INetServiceStarted, INetServiceStopped, INetServicePaused, or INetServiceUnknown. This last
value should be used by all services that do not support controllable services.

ISMSERVICEINFO
//
// Standard service configuration information structure
//
typedef struct tagISMSERVICEINFO
{
 DWORD dwSize; // Structure size
 DWORD dwVersion; // Version information
 DWORD flServiceInfoFlags; // ISMI_ flags
 ULONGLONG ullDiscoveryMask; // InetSloc mask (if necessary)
 COLORREF rgbButtonBkMask; // Toolbar button bitmap background
mask
 UINT nButtonBitmapID; // Toolbar button bitmap resource ID
 COLORREF rgbServiceBkMask; // Service bitmap background mask
 UINT nServiceBitmapID; // Service bitmap resource ID
 TCHAR atchShortName[MAX_SNLEN+1]; // The name as it appears in the menu
 TCHAR atchLongName[MAX_LNLEN+1]; // The name as it appears in tool tips
} ISMSERVICEINFO, *PISMSERVICEINFO;

The ISMSERVICEINFO structure specifies information about the service, including its name and a
description text, and bitmap identifiers and background masks for the toolbar button and service view
bitmaps. These two bitmaps can be the same bitmap resource. The background masks refer to the color
in the bitmap that is designated as the transparent color. The flServiceInfoFlags is made up of bits which
specify the supported features. (See the ISMI_ flag definitions above). The ullDiscoveryMask is the mask
used for INETSLOC discovery, if supported, and should be zero, if INETSLOC discovery is not supported.

Help Files
Each Internet Service Manager Extension DLL is expected to have its own help file. The name of the
help file is generated by the Internet Service Manager at run time and is expected to have the same
base name as the configuration DLL, with the file name extension .hlp. When the configuration function
is called, this help file is set as the default help file by the ISM application. When the configuration
function returns, the old help file name is restored.

Registry Layout
This section describes the registry layout that is used by the Internet Service Manager.

Local_Machine\Software\Microsoft\InetMgr\Parameters\

Various preference settings, such as the size of the ISM window and the current view, are stored here.

Local_Machine\Software\Microsoft\InetMgr\Parameters\AddOnServices

This entry consists of a series of REG_SZ entries, the name which specifies the name of the service, and
value which specifies the configuration DLL name. For example, FTP has the following registry entry:

FTP: REG_SZ: fscfg.dll

Local_Machine\Software\Microsoft\InetMgr\Parameters\AddOnTools

This section specifies the add-on tools supported by the ISM application. An add-on tool is a free-standing
application, which provides some additional functionality. Add-on tools are run synchronously and can be
configured to receive information about the currently selected servers and their services through
command line parameters.

A toolbar button is added for each add-on tool consisting of the small icon of the executable, and a menu
item is added underneath the Tools menu as well. This registry entry consists of a series of REG_SZ
entries, the name which specifies the menu item associated with it underneath the Tools menu (an
accelerator may be used), and the value which has the following format:

application; tooltips text; selected parameters; nonselected parameters application:
Executable or batch file associated with the menu item/toolbar button. If this is an executable, its icon
will be added to the toolbar.

tooltips text:
The text as it will appear in the tooltips, when the cursor is over the toolbar button.

selected parameters:
The command line parameters passed when an item is selected in the current view. There are three
escape sequences that can be used here:

$C        Will be replaced with the selected computer name
$S        Will be replaced with the selected service name
$$        Will be replaced by a single $

nonselected parameters:
The command line parameters when no item is currently selected.

Any of these items, with the exception of application, are optional and can be omitted. For example:
&Sample: REG_SZ: c:\sample.exe;Sample Application;/c $c /s $s;

Local_Machine\Software\Microsoft\InetMgr\Parameters\AddOnHelp

Similar to add-on tools, additional help topics can be added to the Help menu. This is a series of registry
entries, the name which specifies the Help menu item (as with add-on tools, an accelerator can be used),
and the value which specifies an executable or document name to be associated with the menu item.

